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In computing the development of an unstable inviscid shear layer, it is found that using a 
fixed number of vortex elements can lead to large errors due to the strong strain field which 
develops and acts to distort the original vorticity contours. It is suggested that the vorticity 
should be redistributed among elements which are arranged in the local principal direction of 
strain in order to capture this distortion accurately. Mixing within an initially stratified layer, 
which results from the combined action of convection and diffusion, is computed using a 
similar scheme to integrate the energy equation. Calculations illustrate the evolution of the 
temperature profile during the growth of the instability. 0 1988 Academic Press, Inc. 

I. INTRODUCTION 

I. 1. Background 
Numerical simulation of inviscid two-dimensional incompressible flow using 

vortex discretization of the Euler equations has been discussed extensively in recent 
literature (Leonard [l], Beale and Majda [2], Hald [3] and Ghoniem and Ng 
[4]). The method is based on distributing the vorticity field among elements which 
carry radially-symmetric, compact supports of vorticity (Chorin ES]). By choosing 
the extent of the support, or the core radius of each element to be larger than the 
distance of separation between neighboring elements, the fields of i~divi~uaI 
elements overlap and high order discretization of the vorticity field can be achieved. 
Vortex elements move with the local flow velocity evaluated at their geometrical 
centers, which is computed as the summation over the contributions of all elements 
that exist in the field. The motion of a vortex element does not change its cir- 
culation and, in most applications, vortex elements possess invariable core sha 
and size. 

The attraction of these Lagrangian, grid-free methods is that, by construction, 
computational vortex elements are expected to be, at all times, concentrated around 
zones of high velocity gradients. When properly exploited, this property endows the 
scheme with the resolution necessary to study interesting phenomena that arise 
when molecular diffusion is small relative to convective transport. For instance, at 
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high Reynolds numbers, vorticity exists on small patches of the fluid and its suffices 
to distribute computational elements within these patches and hence avoid wasting 
labor on zones of very small vorticity. That the elements move to capture large 
velocity gradients is particularly important in unsteady and nonlinearly unstable 
flows where the evolution of the instability causes a substantial distortion of the 
vorticity distribution. Moreover, using a Lagrangian formulation of the equations 
of motion avoids the convective non-linearity and enables the construction of 
computational schemes which are explicit in time. The employment of moving 
Lagrangian grids (Fritts and Boris [6]), or grid-free schemes such as contour 
dynamics (Zabuski et al. [7]), are other successful ways of accomplishing the same 
goal. 

1.2. Brief Review 
Analysis of the convergence of inviscid vortex methods shows that three factors 

govern their accuracy: (1) the scheme of discretization of the initial vorticity; (2) the 
form of the core function; and (3) the ratio of the core radius to the separation 
between vortex elements (Chorin et aZ. [S], Del-Prete and Hald [9], Hald [3, lo], 
and Beale and Majda [2,11,12]). Results of these analyses have been supported by 
numerical tests (Nakamura et al. [13], Roberts [14], and Perlman [15]). In the 
following, all three factors are briefly discussed. 

To initialize the strength of vortex elements, Del-Prete and Hald [9] used the 
average vorticity within an area element around the center of the element, while 
Beale and Majda [2] suggested using the vorticity at the center of the element. 
Nakamura et al. [13] minimized the global error between the continuous and the 
discrete vorticity distribution to evaluate the latter. Anderson and Greengard [16] 
proposed the use of a nonuniform mesh to discretize the vorticity field. Using the 
procedure in [2 or 93, one should expect almost a second-order accuracy for short 
time if the core function is chosen to be a second-order Gaussian. A fourth-order 
Gaussian was shown to improve the accuracy. In both cases, a critical parameter is 
the ratio of the core radius to the distance of separation between the centers of the 
elements, which must be chosen larger than unity to preserve the accuracy for long 
time. 

As the elements move, their separation exceeds their initial value if a strong strain 
field arises. This, in effect, decreases the critical ratio of core/separation, leading to 
deterioration of the accuracy. The fact that large strains cause deterioration in the 
accuracy of vortex methods has been observed explicitly in analysis, e.g., Leonard 
Cl]. Thus, for most inviscid vortex methods, which are based on using a fixed 
number of vortex elements with invariant cores, the evolution of large local strains 
can lead to large errors. For example, a circular patch of vorticity may deform into 
an elliptical shape with is major axis aligned with the principal direction of strain. If 
a small fixed number of computational elements is used, they may not be able to 
accommodate these severe changes. Anderson [17] and Krasny [18], when dis- 
cretizing non-smooth vorticity, employed a very large core radius so that as vortex 
elements moved away from each other due to stretch, reasonable overlap could still 
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be maintained to satisfy the requirements for accuracy. One may also be forced to 
consider schemes of redistributing the vorticity among a different set of elements 
under conditions of large strain. Similar schemes have been used in methods of 
contour dynamics to preserve the accuracy of the integration around the vortidty 
contours (Zabuski and Overman [19].) Krasny [20], in an independent effort, 
used a similar procedure in simulating the evolution of a vortex sheet by a 
desingularized Biot-Savart integral. 

Extension of Lagrangian element methods to integrate a scalar conservation 
equation has been applied to several problems in one dimension (Chorin [Zl]? 
Ghoniem and Qppenheim [22,23] and Ghoniem and Sherman [24].) T 
schemes were based on using the scalar gradient, in analogy to vorticity, in 
transport process. Anderson [16,25] constructed a scheme to solve for a two- 
dimensional thermal in the inviscid Boussinesq approximation by discretizing t 
density equation in its vortex form. This was done by casting the equation an 
gradient form and discretizing the density gradients among elements that could be 
transported. This scheme, while preserving the advantages of the vortex meth 
suffers from a major problem: A large strain field, while it may lead to 
generation of large gradients, depletes the area of computational elements which are 
used to transport these gradients. 

1.3. Organization 

In this paper, we apply the inviscid vortex methods to the problem of a temporal 
shear layer at high Reynolds number. This problem is characterized by a well- 
defined smooth vorticity field at time zero and has well-documented stability 
properties. At later times, the shear layer develops into a complicated structure 
which resembles a turbulent eddy, and a very strong strain field is generated around 
this eddy. We use the analytical solution of a temporal shear layer to measure the 
accuracy of the results at the initial stages of development and test the schemes for 
initializing the vortex elements. At longer times, we observe the effect of the strain 
field on the accuracy of the computations and suggest ways to cope with it. 
then proceed to compute the temperature field as fluids with different temperatures 
are entrained, stretched, and mixed. 

In Section II, the formulation of the vortex method is described and is ~xte~d~~ 
to solve for a flow with a strong strain field. The scheme is applied to compute the 
evolution of a vorticity layer subject to periodic boundary conditions. The growth 
of the instability and its effects on the flow field are investigated. In Section III, the 
concepts of the vortex method are generalized to solve the energy equation an 
obtain the temperature profile across the shear layer during its development. The 
paper ends with conclusions in Section IV. 
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II. INVISCID INCOMPRESSIBLE FLOW 

11.1. The Vortex Method 

For an inviscid incompressible flow, the vortex transport equation is 

~+“.vco=o (1) 

At+b = -CO, (2) 

where u = (u, u) is the velocity, o = V x u is the vorticity, x = (x, y) are the 
streamwise and cross stream directions, respectively, t is time, V = (a/ax, a/dy) and 
A = V. V. Variables are normalized with respect to the appropriate combination of 
a characteristic velocity and length scale. @ is the stream function defined so that 
u = a+/ay and u = -@/ax. The solution of Eq. (1) can be written as 

&dx, t), t) =4x, 0) (3) 

while x is governed by 

2 = UMX t) t), (4) 

where x(X, 0) =X. In the vortex method, the vorticity field o(X, 0) is discretized 
between elements centered at Xi, i= 1, . . . . N, so that 

o(x, O) = f rifS(x -  xi), (5) 
i=l 

where ri = oih2 is the circulation of an element of strength wi and fs is the core 
function. f&(x) = 1/cS2f(r/6), w h ere r2 = x2 + y2, and j fS dx = 1. 6 is the core radius, 
and& is a fast decaying function so that most of the vorticity is concentrated within 
r < 6. To approximate the initial vorticity distribution accurately, 6 should be 
greater than h, where h is the initial separation between vortex centers. The core 
function f plays a similar role as interpolating polynomials in finite-difference 
schemes and base functions in finite-element formulations. By requiring f to be 
radially symmetric, the approximation in Eq. (5) is at least second order. 

Using Eq. (3) and the incompressibility condition, the vorticity distribution at 
any time is given by 

0(x9 t)= fj rifb(x-Xi) (6) 
i=l 

where dXijdt = u(x,, t) and xi(Xi, 0) = Xi. 
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The stream function of a single vortex element is obtained by integrating Eq. (2). 
Using polar coordinates, for a vortex element placed at x = 0, a$,/& = - ~(~/~)/~~ 
where x(r) = j& r’f(r’) dr’. Moreover, ug = --a~),/&. The velocity field induce 
distribution of vortex elements, of shape f6 and strength Ti located at xi(Xi, t) is 

where 

I&(x)= -wK 5 . 
r 0 

Vortex elements move without changing their circulation (strength) or core shape, 
at a velocity computed from Eq. (7). 

In the calculations, we used mostly a second-order Gaussian core: 

When applying the vortex scheme to a flow field with boundary conditions other 
than u( co, t) = 0, a potential flow is added to satisfy these conditions. In this work, 
we perform computations for a periodic shear layer. The velocity field induced by 
vorticity outside the computational domain 0 <X-CR, where ;1 is the longest 
wavelength of the perturbation, must be added to u,. These total velocity is 

+ n ( - sinh(2zy/A), sin(2nx//Z)) 
/z (cosh(2ny/l) - cos(271x/A)) 

where N is the total number of vortex elements in the computational domain 
0 -C x < A. Note that since 6 4 1, the effect of the core was included only for t 
nearest sister vortices. 

The initial vorticity distribution across the shear layer can be well represente 
a Gaussian curve (with should not be confused with the Gaussian core of i~divi~~a~ 
vortex elements) with a spread 20, 

Q(X)= Au -exp( - P/a’), 
J;;c 
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where dU is the velocity difference across the layer and rs is the standard deviation 
of the Gaussian. The corresponding velocity distribution is 

U(X) = y erf( Y/a), (lib) 

where erf(x) = 2/J% J; exp( - r*) d r is the error function. We take dU and d as the 
characteristic velocity and length scales of the problem, respectively. 

As was pointed out in the Introduction, using either a pointwise discretization, 
oi = s2(Xi), or an area average value wj = JhxhSZ(X) dX, where Xi, i = 1,2, . . . . N, are 
the centers of a square mesh of side h, to discretize the vorticity of the shear layer 
among vortex elements produced a large error in the initial growth of the pertur- 
bation, Instead, the following scheme was used, 

Q(X,) = =f coih2f,(Xi - Xj) (12) 
j=l 

for i= 1, 2, . . . . N. The error associated with this distribution was used as a measure 
of the accuracy of the initial discretization. In all cases, the error le, 1 = 
j IL?(X) - o(X, O)l dX < lo-‘. The error e, increased rapidly as 6/h was decreased 
below one, which is consistent with the result of the convergence theory which 
shows that the overlap between neighboring elements is necessary for accurate 
discretization of vorticity. For 6/h > 1, the error was less sensitive to its exact value, 
until 6/h = 1.5. In the following calculations, we used 6/h = 1.1 - 1.4. 

To measure the effect of the accuracy of the initial discretization of vorticity 
among vortex elements on the flow field for short times, we will use the rate of 
growth of the perturbation. The growth of the initial perturbation can be charac- 
terized by an integral parameter I as 

Z= j-” Ia, Iu(x, t) - U(x)1 dx 
0 -‘x 

(13) 

which is used in the linear theory analysis of the perturbation. 
At t=O, the layer was perturbed by a sinewave with amplitude E, taken as 

0.001;1, 0.01 A, and 0.11. In Fig. 1, we compare the growth of the perturbation with 
the prediction of the linear theory of stability (Michalke [26]) to assess the 
accuracy of the vortex method for short times. For most of the computations, 
1= A* = 13.20, which corresponds to the wave with the maximum growth rate. 
Equation (4) is integrated using a second-order Heun’s method with dt = 0.1, and 
h = i/44 = 0.3, and N(0) = 572 vortex elements. The figure indicates that for E = 0.01 
and 0.001, the layer behaves linearly and the computed growth rate i= 
d In Z/dt = 0.215 agrees well with the results of the linear theory, i= 0.22. The latter 
was computed as the eigenvalue of the linearized Euler equations (Betchov and 
Criminale [27]). Using h = A/24, i.e., N(O)= 168, and a second-order time 
integration scheme, i= 0.23. For N= (0) = 572 and a first-order time integration, 
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FIG. 1. The growth of the perturbation amplitude I with time for the most unstable case, A*, for 
three values of the initial perturbation s/,I=O.OOl, 0.01, and 0.1, showing the linear range and the 
saturation of the perturbation. Each curve is normalized with respect to the corresponding value of I at 
t=o. 

I= 0.24. Within this linear stage of development, the maximum distance between 
neighboring elements in the direction of maximum strain is Ax < Mh, i.e., the 
is developing mild stretch. For E = 0.1, the perturbation leads directly to the non- 
linear range. 

In Figs. 2, 3, and 4, the vortex elements and their velocity vectors are plotted for 
E = 0.001 I, 0.01 I, and 0.1 I, respectively. In the first two cases, the end of the linear 
range corresponds to the beginning of the rollup of the interface, defined here as the 
line which coincides with y = 0 at t = 0, and the formation of a spiral center at the 
midpoint of the wavelength. Concomitantly, the interface starts to stretch near 
boundaries of the domain and two saddle points are established at the beginn 
and end of the wavelength, x = 0 and A. Beyond the linear range, the perturbation 
continues to grow with more layers rolling around the spiral center and stretching 
near the saddles. Within this nonlinear range of development, special care must be 
exercised or the numerical accuracy deteriorates quickly, as exhibited by the 
evolution of irregular motion near the saddles and the loss of organization of t 
evolving structure. 

IP.2. Effect of Stretch 
The loss of organization, which is associated with the development of strong 

stretch, illustrates one of the fundamental problems of the vortex method. Vortex 
elements, which start as cores with radial symmetry, may not properly represent the 
vorticity field after it has developed strong local strains. As the effective distance, 
dx, between neighboring elements increases, the ratio S/Ax (equivalent to (6;/h) 
reaches levels where the vorticity discretization becomes inaccurate. One obvious 
remedy is to restart the calculations with smaller values of h to allow a larger 
number of weaker elements to represent the strong distortion However, that only 
delays the onset of the crisis at the expense of using more elements at the initial 
stages when they are not needed. Several remedies may be suggested: (1) ~tiIi~n~ 
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=I= -----..-.--.--- -__.__ - .__._ -_.._ __._ ..---.--.- _._ .___ _____________.__. 
TIME = 0.00 ’ ELEMENTS = 572 TIME = 24.00’ELEMENTS = 891 

--.------ ---. ............. .... ..-. ...... . _-__ __.- 

TIME = 8.00’ELEMENTS = 572 TIME = 30.0 ELEMENTS = 1623 

TIME = 16.00 ELEMENTS = 595 
I 

TIME = 37.50 ELEMENTS = 3257 

FIG. 2. The location and velocity of the vortex elements during the rollup of a temporal shear. 
1=1*, with ~/~=0.001. N(O)=572, h=0.3, 6=0.375, and dt=O.l. 

deformable cores; (2) employing large cores; or (3) using more elements as the 
distance between the original elements increases. 

The first scheme, utilizing deformable cores, depends on assuming that the core 
structure will become elliptical as stretch develops, with the major axis of each 
element aligned with the local principal direction of strain. The vorticity dis- 
tribution within the core must also adapt to he geometrical boundaries of the cores. 
If elements with constant vorticity within the cores and zero outside, i.e., Rankine 
vortex elements, are used then these elements will become Kirkchoff vortices which 
have analytical expressions for the induced velocity field. However, there is an 
obvious limitation on maintaining one ellipse as a single element if the ratio 
between its axes exceeds a reasonable value. Thus, this scheme is discarded. 

The second scheme, in which one uses large cores, did not yield accurate predic- 
tions for the growth rate within the linear range, in accordance with the results of 
the convergence theory. Moreover, it will fail at the point where S/Ax < 1 due to 
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TIME = O.OO'ELEMENTS = 440 TIME = 18.00' ELEMENTS = 980 

TIME = 6.00 'ELEMENTS = 440 TIME = 24.00 ' ELEMENTS = 1778 

TIME = 12.00 ' ELEMENTS = 574 TlME = 28.5'ELEMENTS = 2747 

FIG. 3. The location and velocity of the vortex elements. Wavelength is I*, and s/L = 0.01. At a = 0, 
N=440, h=0.33, 6=0.4, and At=O.l. 

stretch. It does, however, delay the deterioration of accuracy since it maintains a 
reasonable overlap between neighboring elements for longer times. 

The third option, redistributing the vorticity field among an increasing number of 
elements arranged along the direction of principal direction of strain, is employe 
here. One monitors the distance between neighboring elements in the direction of 
maximum positive stretch Ax. If Ax > bh, where 1 < /3 < 2, an extra element is 
placed halfway between the original elements and the vorticity is redistributed to 
compute the share of the new element. Ideally, this redistribution should not 
perturb the existing vorticity field; that is, 

0(x, t) = f TJa(x - Xi) = y .Qs(x - $&), 614) 
i=l i=l 

where n is the number of new particles, and a - indicates the new value of the 
strength and location of the vortex elements. Unfortunately, this is a large 

581/79/l-10 
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TIME = 0.00’ ELEMENTS = 440 TIME = 12.00 ’ ELEMENTS = 1252 

TIME = 4.00 ’ ELEMENTS = 586 TIME = 16.00’ELEMENTS = 1782 

TIME = 8.00’ ELEMENTS = 858 TIME = 20.00’ ELEMENTS = 2458 

FIG. 4. The location and velocity of the vortex elements for 1= I*, and s/A = 0.1. All the numerical 
parameters are the same as in Fig. 3. 

system of linear equations to be solved every time step. Therefore, its benefit does 
not warrant the added cost. 

A more economical scheme is based on equally distributing the strength of the 
two original elements among the three elements, i.e., assuming uniform stretch 
between the two original elements. This amounts to splitting the original vortex 
dumbbell formed of two vortex discs into three discs when the distance between the 
centers of the two discs exceeds a threshold, as shown in Fig. 5. To minimize the 
interpolation errors, the maximum interdistance between neighboring elements is 
taken as 1.5h. This will also keep the ratio S/LIZ within reasonable limits. 

To illustrate the degree of stretch experienced by this flow, we plot the growth of 
the length of the interface, and the total number of vortex elements, N(t), used to 
capture this stretch for three perturbations E = 0.0011, O.OlA, and 0.11 in Figs. 6, 7, 
respectively. Within the linear range the layer is subjected to mild stretch and N 
remains almost constant. Beyond that, the length of the line grows linearly and N 
multiplies accordingly. From the plots of the location of vortex elements, we 
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FIG. 5. Schematic diagram showing how the vorticity is redistributed among three elements when 
the distance between two neighboring elements exceeds a pre-specified value. (x,, y,) are the coordinates 
of the new elements. 

FIG. 6. The total length of the interface, originally at y=O, with time for the cases presented in 
Figs. 2, 3, and 4, normalized with respect to its length at t = 0. 

FIG. 7. The number of vortex elements used to represent the vorticity field during rollup for three 
Initial perturbations, normalized with respect to the corresponding value at t = 0. 
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noticed that most of the stretch is concentrated around the spiral center and the 
saddles at the boundaries of the domain. 

11.3. Shear Layer Dynamics 

Figures 1, 2, 3, and 4 reveal that the growth of the perturbation and the develop- 
ment of the eddy structure can be divided into four stages: (1) linear growth; (2) 
rise to a maximum amplitude; (3) decay to a constant amplitude; and, (4) very slow 
decrease of amplitude. The first stage has been discussed. The strongest stretch and 
fastest multiplication of the vortex elements occur during the second stage where an 
eddy is forming in the middle of the wavelength and two braids are evolving 
between each two neighboring eddies. During this stage, the core maintains almost 
a circular configuration and the stretch is concentrated within the braids. 

In the third stage, the eddy deforms into an elliptical structure, while the size of 
the perturbation decreases from its maximum value. This is accompanied by more 
stretch along the braids and within the core, and a slowdown of the eddy rotation. 
By the end of this stage, the thickness of the braids at the saddle points has become 
extremely small. At the final stage, the envelope of the core reaches a dynamic 
equilibrium, i.e., it does not rotate any more, while its boundaries keep on 
stretching as the fluid within the eddy starts to move in the main directions of the 
streams. Although there are signs of that, it is difficult to confirm that the flow has 
reached a steady state. 

The kinetic energy of perturbation u’ . u/2, where u’ = u - U, and the total kinetic 
energy in the flow within the computational domain, u . u/2, are plotted in Figs. 8a 
and b. The first quantity rises with the growth of the perturbation and the 
formation of the eddy, then falls with the collapse of the eddy and the return of the 
fluid to the main streams (Corcos and Sherman [28]). The total kinetic energy is 
conserved since the flow is inviscid. 

Using larger values for h while keeping 6/h the same caused a slight fattening of 
the core at later times, while the main features of the flow were reproduced almost 
exactly. A similar modification of the structure is observed when using a first-order 
time integration scheme or increasing the time step. It was concluded that the errors 
introduced by using a small number of elements or a low order time integration 
scheme were numerical-diffusion like errors. We also found that the dependence on 
the value of h, or the initial number of elements, becomes much less pronounced 
when the scheme of increasing the number of elements with stretch is employed. 
Figure 9 shows a qualitative comparison between the experimental results of 
Roberts et al. [29] and the computational results. Here we use a Galilean transfor- 
mation to compare the experimental results of the spatially developing layer and 
the computational results of the temporal layer. 

The physical parameters that govern the flow field are L and E. Results for the 
rollup of a layer with 1= 10.5 < 1* are presented in Figs. 10 and 11, showing the 
growth of the perturbation and the vorticity field. A* is the wavelength of the most 
unstable perturbation. The computed growth rate i=O.214 while the analytical 
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I 

0 5 10 15 20 25 30 35 40 

TIME 

FIG. 8. (a) The total kinetic energy of the perturbation based on the perturbation velocity, 
(U(x) - u(x, L))~, and (b) The total kinetic energy of the flow, u2, for e/A = 0.001, 0.01, 0.1. 

t=8 t= 12 t = 16 t = 20 

FIG. 9. The evolution of the vorticity field with time, compared with the experimental results of 
Roberts et al. [29] for the spatial development of a small perturbation of a shear layer. 
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0 5 IQ 15 20 25 

TIME 

FIG. 10. The growth of the perturbation amplitude for A= 10.5, s/A =O.Ol, N(0) =455, h =0.3, 
6 = 0.375, and At =O.L 

TIME =i o.oo’ ELEMENTS = 455 ‘TIME = 12.00 ’ ELEMENTS = 593 

‘TIMg = 4.00 ELEMENTS = 455 TIME = 16.00 ‘ELEMENTS = 893 

TLME = 8.OO’ELEMENTS = 501 TIME = ZO.OO’ELEMENTS = 1315 

FIG. 11. The location and velocity of the vortex elements used in the calculations of the case shown 
Fig. 10. 
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- . . . - -~~ -  -.______ . . _ - . -  
^ . ._ .  -  .  .  .  .  _ . . . .& ____._ 

TIME = 0.00 ' ELEMENTS = 540 TIME = 24.oo'ELEMENTS = 1172 

TIME = 8.00'ELEMENTS = 540 TIME = ~~.OO'ELEMENTS = 2352 

TIME = 16.00 ELEMENTS = 682 
I 

TIME = 34.00 ELEMENTS = 2716 

FIG. 12. The vorticity field for I = 2;1*, C/A = 0.01, N(O) = 540, h = 0.44, 6 = 0.5, At = 0.1 

value is 0.208. More vorticity remains in the braids between the eddies which are 
not strong enough to accomplish the same stretch as in the case of I*. 

Figures 12 and 13 show results for I = 2,X*, with E = 0.01 ;t and 0.1 ,I, respectively. 
In the first case, i = 0.18 while the analytical result is 0.173. The core is smaller and 
weaker than for the case of 1* and hence the braids are thicker and maintain more 
of the original vorticity. At later times, a small scale rollup is obsered near the 
boundary of the domain due to the instability of the vorticity layer that forms the 
braids. This rollup occurs only at the fourth stage of development when the mid- 
section of the braids becomes almost stationary, i.e., when the motion produce 
the braids is neutralized. Comparing Figs. 12 and 13, we see that contrary to the 
most unstable case, the effect of the initial perturbation is more pronounced here in 
terms of the size and shape of the eddy and the braids. Higher amplitudes of pertur- 
bation tend to form a larger core and thinner braids. The ratio between the major 
and minor axes of the elliptical core increases with E and small amplitude waves 
start to appear on the braids. 

Figures 14 and 15 show results for ,I = 31* with amplitudes E = O.OLI, and 8.11, 
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TIME = 0.00 YLEMENTS = 540 

TIME = 8.00 ELEMENTS = 732 

TIME = 12.00 ’ ELEMENTS = 1072 

rlME = 18.00 ‘ELEMENTS = 1620 

‘TIME = 24.00 ‘ELEMENTS = 2649 

TIME = 26.00 ELEMENTS = 3150 

FIG. 13. The vorticity field for 1= 21*, &/A = 0.1, using the same numerical parameters as in Fig. 12. 

respectively. The effect of the amplitude is emphasized further since at larger E, the 
core splits into two eddies. This bifurcation phenomenon was observed before by 
Pozrikidis and Higdon [30]. The braid instability is manifested here by the long 
waves that appear at the later stages of development of the layer. 

With the presence of two perturbation wavelengths, a new process is observed. 
Figures 16 and 17 depict results for a layer subject to two perturbations super- 
imposed at t = 0, at I* and 21* with E = 0.11* for both perturbations. The results 
show that when the amplitude of the two perturbations are equal, pairing starts at 
the end of the second stage and before any substantial elongation of the eddies. The 
growth of the subharmonic perturbation closely resembles that of the fundamental, 
as shown in Fig. 17. The eddies continue to deform while they pair until the “vortex 
fluid” contained within each structure start to rotate around a common center and 
their original boundaries become indistinguishable. Similar qualitative observations 
were, shown in the computations of Gorcos and Sherman [28] and Riley and 
Metcalfe [31]. 
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TIME = 8.00 ELEMENTS = 810 

‘TIME = 16.00 ELEMENTS = 810 
I TLME = 34.00 ELEMENTS = 2556 

FIG. 14. The vorticity field for 1= 3A*, s/A = 0.01, N(0) = 818, and the values of h, 6, and dt are the 
same as in Fig. 12. 

III. THE TEMPERATURE DISTRIBUTION 

III.1. The Transport Element Method 
In an inviscid incompressible flow, the temperature distribution evolves 

according to the following form of the conservation of energy: 

where T is temperature. This is equivalent to the statement that T(x(X, t), t) = 
T(X, 0), where x(X, 0)=X and dX/dt =u(x, t). To solve this equation using a 
Lagrangian element scheme, we start by introducing the temperature gradient 
q =VT, where q = (p, q) is a vector proportional but opposite to the 
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TIME = 0.00 ’ ELEMENTS = 810 ‘TIME = lZ.OO’ELEMENTS = 1268 

TIME = 8.00’ ELEMENTS = 1092 TIME = 20.00’ELEMENTS = 2172 

FIG. 15. The vorticity field for A= 31*, E/ = 0.1, using the same numerical parameters as in Fig. 14. 

vector -kq, k being the thermal conductivity. The transport equation of q is 
obtained by taking the gradient of Eq. (15) and rearranging, 

8s z+u.vq= -q-vu-qxco (16) 

where CO = oe, and e, is the unit vector normal to the (x, y) plane. Thus, along a 
particle path x(X, t), the temperature gradient changes according to the local strain 
field and turns with the local rotation of the fluid element. Using the vortex method 
described in the previous section, the velocity gradient may be computed directly 
from the vorticity distribution as: Vu = C ri VK,(x - xi) + Vu,, where up is the 
irrotational component of the velocity. 

The scheme proceeds in the same way as the vortex algorithm. The initial 
temperature gradient is discretized among a number of elements located at the 
centers of a square mesh of side h so that 

4tx> O) = 2 Qih2S,(x -  xi), (17) 
i=l 
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EMENTS = 2914 

FIG. 16. The location and velocity of the vortex elements for two perturbations, I, = I* and 
,I, = 21*, with E =O.ld* for both perturbations. N(0) = 336, h = 0.55, 6 = 0.6, and LIZ = 0.5. A fomth- 
order time integration scheme is used to transport the elements. 
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FIG. 17. The total amplitude of the perturbation of the case in Fig. 16. 
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where q(x, 0) is the initial distribution of the temperature gradient, q =VT(X, 0). 
To initialize qi, a similar procedure to that used in computing the strength of the 
vortex elements is employed here, i.e., Eq. (12) with q instead of W, is solved to find 
q,(O). To update qi(t), Eq. (16) is solved in two fractional steps; in the first step, the 
elements are transported without changing their strength or their core shape or size. 
In the second step, the strength of the elements is updated according to 

hi dt= -qi .vui -qi xt.!Ji. 

Thus, a system of ordinary differential equations must be integrated to update the 
strength of the gradient elements as they move along particle paths. The local 
gradient at time t is computed from 

qtx2 t)= f qi(t)h2f,(X-X,j). 
i=l 

(19) 

The core functionf, may be different for the vortex elements and the gradient trans- 
port elements. In this work, we use the same form for both. The temperature can be 
calculated by direct integration of the gradient along a determined path. As pointed 
out by Anderson [17], a convenient expression can be obtained by expressing 
the temperature as a Poisson integral in the temperature gradient, T= 
s VG(x - x’) . VT(x -x’) dx’. Using Eq. (19) for qi, we get 

T(x, t) = f qi(t) . VG,(x - xi), 
i=l 

(20) 

where 

while the relationship between f and K is as before. This expression is convenient 
when used in connection with the vortex method since all the functions involved in 
the summation must be computed for the transport of the vortex elements and with 
simple programming tricks, the increase in cost can be minimized. 

Results obtained for the temperature distribution in the shear layer of Figs. 2, 3, 
and 4 are shown in Figs. 18, 19, and 20, respectively. At t =O, the temperature 
distribution is described by an error function, with T(x, 0) = 0.5( 1 + erf( Y)). This 
choice is motivated by the fact that this is the fundamental solution of the diffusion 
equation. Therefore, an initial discontinuity in temperature would develop into 
an error function before the perturbation grows and convection effects become 
important. The layer is first perturbed by a sinewave by displacing the elements 
according to Y= y(X), and then the temperature gradient Q(X) is computed. The 
discrete values qi(0) are obtained as follows: Since the temperature is constant 
along the streamlines after the perturbation Y= i’(X), then T(X, 0) = Q(X) = 
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FIG. 18. The temperature distribution across the layer at the center of the core, for A* and 
s/d = 0.001. The numerical parameters are the same as in Fig. 2. 

OS(1 +- erf( Y- F(X)). From this equation we can recover the initial dj.strib~tio~ of 
P(X, Q), and Q(X, 0) as 

P(X)=g= -Gau(Y- P(X))% 

Q(X) =g=Gau(Y- F(X)), 

where Gau is a Gaussian similar to Eq. (1 la). These expressions are then used in 
Eq. (17) to compute qi. The values of qi(0) were initialized one column at a time, 
i.e., for fixed values of X, to avoid solving N2 simultaneous equations, and instead 
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FIG. 19. The temperature distribution across the layer at the center of the domain for A* and 
E/A = 0.01. The numerical parameters are the same as in Fig. 3. 

solve N, of N, simultaneous equations. The error associated with this 
approximation was very small since the perturbation was kept at a low value. 

In the computations, we used the same particles to transport vortex elements and 
elements of the temperature gradient. This represents a substantial saving since the 
kernel functions appearing in the expressions of the velocity, velocity gradients, and 
temperature can be computed all at once and the velocity is computed only for one 
set of elements. 

111.2. Entrainment in a Shear Layer 

To quantify the overall change in the temperature distribution, we define a 
quantity Y, similar to the growth 1, as 
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FIG. 20. The temperature distribution across the layer at the center of the core for I* and E/L = 0.1, 
The numerical parameters are the same as in Fig. 4. 

’ Y= II a, 1 T(x, t) - O(x)/ dx; (22) 
0 --a, 

Y can be regarded as an average thermal thickness of the shear layer. Within the 
linear range, the temperature distribution remains essentially the same, except for 
getting shifted up or down depending on the local sign of the perturbation. 
Fig. 21, the natural logarithm of r(t) is shown for three values of the initial 
amplitude of the perturbation. The accuracy of the calculation of the temperature 
profiles depends on the initialization of the vorticity and temperature gradien.t an 
on the value of 6/h. 
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FIG. 21. The variation of the logarithm of the temperature thickness Y with time for the cases in 
Figs. 2, 3, and 4. 

During the second stage, and with the rollup of the interface and the 
establishment of a spiral center at the midpoint of the wavelength, a complex tem- 
perature gradient develops as a result of the motion of the cold fluid upwards and 
the hot fluid downwards around the spiral center. Within this stage, if the number 
of transport elements remained the same, i.e., stretch was not accomodated by 
introducing elements where the local strain is large, the temperature distribution 
would collapse very quickly. In the problem of periodic shear layer, this collapse 
leads to values of T(x, + co, t) -C 1 and T(x, - co, t) > 0. The reason of the loss of 
accuracy is clear from Eq. (16). When the elements move apart, the accuracy of 
computing the velocity gradient Vu deteriorates, and hence the new values of qi 
accumulate large errors. Thus, while the calculation of the velocity field at the early 
stages of strong stretch using a fixed number of vortex elements may be acceptable 
for a short period of time, the calculations of the velocity gradient and the 
evolution of a passive scalar will show unacceptable errors. 

To continue beyond the linear stage, the distance between neighboring elements 
in the principal direction of strain, Ax, must be monitored. If Ax > Bh, where /3 > 1, 
one extra element is added between the two original elements and the total value of 
qi is redistributed equally between the three elements. In the calculations, we used 
/? = 1.5. Numerical convergence, in which one systematically refines the numerical 
parameters until no more changes are observed, was used to obtain these results. 

The effect of the shear layer rollup on the temperature distribution is seen in 
Figs. 18 and 19. Immediately after the interface reaches a vertical position, an 
S-shape starts to form indicating that cold fluid has been transported from the 
lower stream into the upper stream and vice versa. This phenomenon, known 
physically as engulfment or entrainment, relies solely on convective transport and is 
observed when molecular diffusion, which acts to dissipate the sharp gradients, is 
small. Fast entrainment with small diffusion leads to “unmixedness” of hot and cold 
fluids within the eddy core. With more fluid being transported to the opposite 
stream the S-shape grows, reaching a maximum amplitude when the interface 
becomes horizontal. At this moment, fluid with the maximum and the minimum 
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temperature has been entrained into the core, i.e., entrainment has reached all the 
way to the free streams to bring fluid into the core of the eddy. This is the stage of 
maximum entrainment when the core size reaches its largest size and cannot accom- 
modate any more fluid. In the case of E = 0.11, it corresponds to t = 8.0, which is at 
the end of the second stage of development. To make the correspondence between 
the temperature profiles and the evolution of the interface of the layer clear, we plot 
the latter in Fig. 22, showing the actual vortex elements that were used in the 
computations of the interface. At this time, the interface has rotated 180” around 
the spiral center. This is the first step in the process of homogenization of the core. 

As the core rotates further into the third stage, the inner part of the interface 
develops a secondary instability that rolls up in a very similar manner to the 
primary instability. This secondary instability is in phase with the Bernard 
instability and can be envisioned by zooming in on the intersection between the 
interface and the horizontal centerline of the layer. Due to the elongation of the 
outside envelope of the core, the wavelength of the secondary instability grows with 
time, as seen from Fig. 22. However, the amount of fluid within the ~lli~t~~al 

. . _.---- ..__ 

.‘._.____..‘. 

TIME = 0.00, TIME = 12.00 

TIME = 4.001 TIME = 16.001 

TIME = 8.00 

FIG. 22. The rollup of the interface, defined by the layer which coincides with y = 0 at t = 0 for the 
case shown in Fig. 4. 

581/79/l-11 
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envelope remains constant, or decreases slowly as seen from Fig. 21 for the tem- 
perature thickness of the layer. The growth of the secondary instability provides a 
mechanism of internal entrainment within the core. During the growth of the 
secondary instability, an inverted S-shape, or a Z-shape, forms in the middle of the 
temperature profile, Figs. 18-20. The entrainment associated with this instability 
turns the fluid in a clockwise fashion, making the inside of the core more uniform. 
This is seen from the decay of the peaks in the temperature profile as this Z-shape 
grows. 

With another 180” turn of the interface at the spiral center, a smaller S-shape 
forms in the middle of the profile due to the onset of an even shorter wavelength 
instability that is in-phase with the primary instability. While the existence of the 
secondary instability was not observed before in numerical simulations, its presence 
is clearly seen in the experimental results in Fig. 9. 

The onset and subsequent growth of successively shorter wavelength instabilities 
continues, leading to a more uniform temperature distribution within the eddy core. 
An asymptotic limit to this process can be foreseen: it is the formation of a tem- 
perature profile with the following shape: T = T, at y > A/2; T = T_ m at y < -A/2, 
and T= (T, + T-,)/2 in between, where A is the minor axis of the elliptical 
envelope at x = J/2. This shape has been measured experimentally by Konrad [32] 
(see also Broadwell and Breidenthal [33]), for mixing layer flows at high Reynolds 
numbers. This is, to our knowledge, the first time it has been computed 
numerically. 

By the end of the third stage, the layer cannot absorb any more energy and a 
relaxation process occurs, during which the kinetic and thermal energy are fed back 
into the main flow streams. This reverse action is accompanied by the fluid leaving 
the core and moving back into the main streams at a very slow rate. 

111.3. Effect of Molecular Diffusion 

The generation of’ large temperature gradients within the core as successive 
instabilities evolve gives rise to large molecular diffusion fluxes which act to smooth 
out some of these gradients. While for most cases of interest the diffusion transport 
is very small relative to the convective transport, i.e., the Reynolds number is high, 
diffusion plays an important role since mixing at the molecular scales can only be 
accomplished via molecular diffusion. Thus, the combined action of convective 
entrainment and molecular diffusion leads to the homogenization of the tem- 
perature within the eddy core. To simulate the effect of diffusion for small values of 
a in the current model of a shear layer, Eqs. (15) and (16) are modified by adding a 
diffusion term, 

(23) 

and 
a4 z+u.vq= -q.vu-qxw+crv2q, (24) 
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where a is the nondimensional molecular diffusivity, or the inverse of the Peclet 
number. At high speed flow, the Peclet number is typically 103 - t05. To solve 
Eq. (24) using the scheme that we have developed, a third fractional step must be 
added, in which the value of q is updated according to 

8% --Gmqi at 

without changing the shape of the core function or the value o 
6 = s(t), and substituting Eq. (19) into Eq. (25) we find that d a2/dt 
core radius must change according to 

where 6, is the core radius at t = 0 (for more discussion, see Leonard Cl], Ashurst 
[34].) The cores of the vortex elements and of the temperature gradient elements 
become different with time. 

Results in Fig. 23 show the temperature profile at T= 20 for the case of .A* and 
E = O.lA*, evaluated for c1= 0.0, 0.00001, 0.0001, 0.001, 0.01, and 0.1. Note that the 
temperature profiles of the first two cases are almost identical, indicating that the 
effective diffusivity of the inviscid calculation is of the order of lo-‘. In the last 
case, the temperature profile is similar to the case of pure diffusion, indicating that 
diffusion proceeds at a rate faster than the instability. It is also noticed that for 
moderate values of CC, 0.0001 < CI -C 0.01, diffusion only affects the core of the eddies, 
making them achieve a homogeneous state faster. 

Greengard [35], in his analysis of the core-spreading vortex method in w 
fixed number of elements are used to perform the convective transport and their 
cores are expanded to account for the effect of diffusion, showed that t 
does not converge to the correct equation of motion except when the 
outside the region 101 r 0 is uniform. We have used a core spreading scheme to 
simulate the effect of diffusion in the energy equation with two modi~catio~s~ (I) 
the number of transport elements which discretize the gradient field is increasing 
with time; and (2) CI is kept small. Utilizing an increasing number of elements to 
perform the convective transport is essential since it is important to determine t 
gradient field accurately, in terms of the location and strength of the elemen 
before the diffusion effect can be added. In essence, adding transport elements at 
areas of high strain allows the computational elements to capture all the vorti 
and temperature gradient carrying fluid at all times, even after the vorticity 
been fragmented by the action of the strain field. Without this step, strain will 
create areas which are void of elements, thus, diffusion cannot be represented. 

In the particular application of a shear layer at high Reynolds number, the flow 
field is uniform outside the area where 10) > 0, and this area expands ~10~1~ by 
diffusion if M. < 1. Limiting the simulations to small values of CC (1) reduces the 
errors associated with the fractional step scheme used to solve Eq. (24) (Beale and 
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FIG. 23. The effect of thermal diffusion on the temperature distribution across the layer. 
Temperature is shown at t = 20 for the case shown in Fig. 4. 

Majda [36]); and (2) reduces the errors concomitant with convecting an element 
with the velocity evaluated at its center while its core radius is growing. To accom- 
modate this growth, which causes the spread of vorticity in the direction normal to 
the streamlines, one may be forced to add elements in the direction normal to the 
maximum principal strain direction and then redistribute the vorticity. It is, 
therefore, clear that the scheme is only applicable when CI < 1 and for short time, 
i.e., at < 1. If these two conditions are not satisfied, one must divide each element 
whose core radius is larger than a critical value into a number of separate elements 
so that the convective transport can be performed accurately. Since most interest in 
shear layer flows is at high Reynolds number, or a < 1, and within the short time of 
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Fig. 24. Total mixing, M(t, a, 0.1) due to the combined action of entrainment and diffusion, 
evaluated for different values of a. 

development of the convective instability, we feel that the current scheme is 
sufficient for this application. 

To define a quantitative measure of mixing in a single phase fluid with thermal 
stratification, we observe first that mixing is only achieved by molecular diffusions 
Large entrainment fluxes bring the unmixed fluid layers in contact along a larger 
interface; however, molecular diffusion across this interface is what accomplishes 
the actual mixing. A measure of mixing can be defined as 

-wt, 6 E) = Jo- Je-a IT( x, t, 01, E) - T(x, t, 0, &)I dx. 

Note that M(t, 0, E) = 0, while M( t, a, 0) is due to diffusion only. In 
M(t, 01,O.l) is plotted for various values of a and for I*. It represents mixing 
the combined action of entrainment and diffusion. At very small values of a, 
is limited by the amount of diffusion across the fluid layers which have been 
entrained into the eddy core. Since for these values of a the convective transport is 
faster than the diffusive transport, mixing increases approximately as .J%. ~owev~~~ 
as 01 increases, and at longer times, mixing proceeds at a slower rate since it 
becomes bounded by entrainment of unmixed fluid into the eddy core which almost 
ceases by the end of the second stage of rollup. 

IV. CONCLUSIONS 

In this work, the vortex element method is used to compute both the early an 
late stages of development of an inviscid temporal mixing layer. In this method, the 
vorticity is initially discretized among overlapping elements of radially symmetric 
cores. We find that using a scheme which depends on equating the vorticity at the 
centers of the elements with the accumulative value induced by all elements is 
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necessary to obtain accurate results for initial vorticity discrezation. We also find 
that to ensure the accuracy of the solution for short times, the ratio of the 
core/separation should be larger that one. Very large cores introduce a strong 
perturbation in the vorticity field, while smaller cores cause a fast deterioration of 
accuracy. Using fourth-order Gaussian cores results in better accuracy over second- 
order Gaussian cores. However, we feel that the improvement in accuracy does not 
warrant the added cost. 

As time proceeds, the distance between neighboring elements exceeds its initial 
values due to the generation of strong stretch. This leads to the computation of 
inaccurate velocities and is manifested by the irregular motion of the vortex 
elements. To overcome this problem, the vorticity is constantly redistributed among 
elements inserted along the principal direction of strain to capture the local defor- 
mation of the vorticity field and to improve the resolution of the calculations. This 
is achieved by an insertion-and-interpolation process, which is applied where the 
distance between the neighboring centers along the principal direction of strain 
exceeds a threshold value. We show, using solutions for a shear layer perturbed at 
different wavelengths and amplitudes, that this process yields accurate solutions for 
the vorticity distribution at long times and after strong strain fields have caused a 
severe distortion of the streamlines. This scheme enables one to accurately compute 
the local velocity gradient which, while it is not required in connection with 
vorticity convection, is necessary for the accurate evaluation of the convection of a 
passive scalar. 

The temperature gradients, distributed over transport elements which resemble 
in their structures the vortex elements, are used to compute the temperature 
distribution as the rollup evolves. Contrary to vorticity, scalar gradients are not 
conserved along particle paths, thus, the strength of these transport elements 
is changed according to the straining and rotation of the material elements. The 
scheme is capable of capturing very sharp gradients that develop within the core 
since the elements migrate towards these zones by convection. The multiplication of 
these elements via stretch, which inadvertently mimics the physical process by 
which large scalar gradients are generated, provides a naturally adaptive grid to 
compute these gradients. By expanding the cores of the transport elements, the 
effect of small diffusivities can be simulated as a small perturbation to the convec- 
tion field. Diffusion, even at high Peclet number, is responsible for generating areas 
of uniform temperature inside the eddy since it acts to smooth out the sharp 
gradient created by convection. 

The application of vortex methods to problems in which the no-slip boundary 
condition along solid walls must be satisfied can be accomplished using the random 
vortex method (Chorin [37], and Sethian and Ghoniem [38].) In this method, 
extra vortex elements are generated along the solid walls to cancel the slip velocity, 
and the diffusion of vorticity is simulated by the random walk of the vortex 
elements. At high Reynolds number, a strong strain field is expected to cause 
similar problems as described in this work, i.e., areas of large stretch will be 
depleted from vortex elements and accurate resolution of the vorticity field may be 
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lost around these areas. Extending the insertion-and-interpolation scheme described 
in this work to the random vortex method requires: (1) adding a third fractional 
step, which must be performed after the convection and before the diffusion steps, 
for the redistribution of the vorticity field among elements arranged in the direction 
of principal strain; and (2) computing the strain field at the center of the vortex 
elements in a Lagrangian form since, due to random walk, neighboring vortex 
elements and neighboring material elements change as time evolves. The implemen- 
tation of these two steps must be preceded by careful formulation and will require 
lengthy computation. 
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